Report from the LANL Spoke Cavity Workshop in October 2002

Frank L. Krawczyk LANL, LANSCE-1

Presented at the 11th Workshop on RF Superconductivity Travemünde, Germany September 8-12, 2003

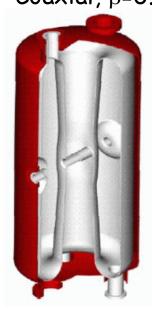
Introduction

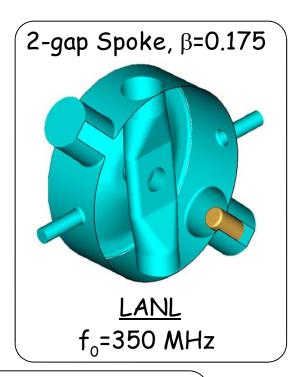
- Spoke resonators considered as low- β structures in recent proposals (AFCI, RIA, ESS, Eurisol, XADS)
- Based on Delayen's and Shepard's work (1980s) new spoke resonators have recently been built and demonstrated in low power tests
- Workshop at LANL to report and compare approaches and to discuss paths to demonstrate their usefulness in real accelerators
- This is a summary of the meeting from last October, where basically the whole community active in the field was present
- Recent progress will be pointed out also

Some Statistics

- Dates: October 7-8, 2002
- Participants: 37
- Organizations: 11 laboratories and universities from the USA, Germany, France and Italy
- Industry: 3 companies participated
- Proceedings: 642 pages
- Website: http://laacg1.lanl.gov/spokewk/
- Pre-workshop cavity test: 12 participants

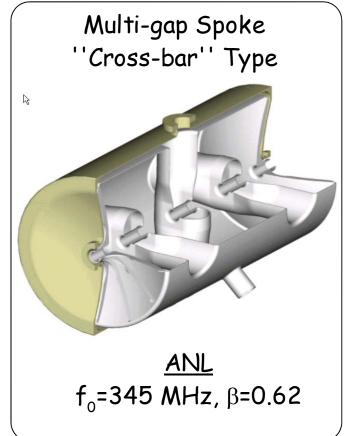
History


- \bullet Range of cavity shapes needed to cover particles' $\beta\text{-}$ range
- Acceleration of low- β particles requires low frequency resonators (active length proportional to λ)
- First structures used: variations of $\lambda/4$ resonators, provide smallest transverse dimensions for longest gap
- Quarter wave resonators susceptible to mechanical vibrations, not easily stackable for improved real estate gradient (multi-gap resonators)
- Coaxial $\lambda/2$ resonators address mechanical vibrations only
- Jean Delayen and Ken Shepard first investigated the spoke resonator as a variant of a $\lambda/2$ resonator in the mid 1980s.



Types of $\lambda/2$ Resonators

Coaxial, β =0.252

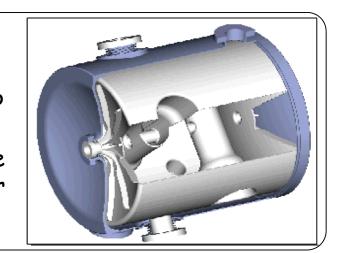

<u>ANL</u> f₀=172 MHz

Multi-gap Spoke ''Ladder'' Type

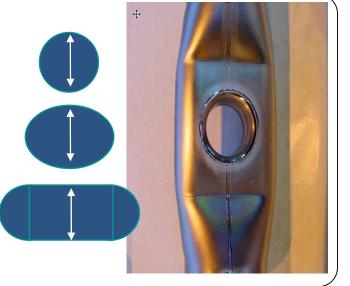
Legnaro $f_0=352 \text{ MHz}, \beta=0.12$

Advantages of Spoke Resonators

- Suitable for bridging the gap between very low β s (<0.1) and β s, where elliptical resonators become useful (\approx 0.5)
- Stable field profile due to high cell-to-cell coupling
- Mechanically more stable than $\lambda/4$ (and λ) resonators
- Large number of degrees of freedom for RF-design
- Can support high field levels even at low β (low peak field ratios)
- No clear-cut transition energy from spokes to elliptical resonators:
 - At given f_0 more compact than elliptical resonators
 - For given size extends operability at 4K
- Stackable, can be operated as multi-gap device



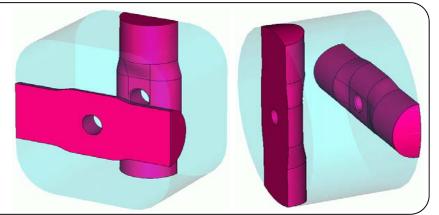
RF Design Specifics


ANL: 2 spoke resonator (β =0.4), 4 gap resonators (β =0.50, 0.62)

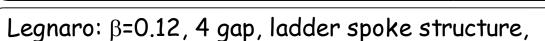
- Emphasis on 4 gap resonator advantages over 6 gap elliptical resonators (SNS) at same βs
- Presented results on mode splitting advantage of the cross-spoke compared to the ladder structure

CNRS: β =0.35 2-gap resonator,

- design uses spokes in the range of β =0.1 0.5,
- presented their optimization strategy and results of a parameter study,
- showed effect of the variation of the spoke cross-section in high electric vs. high magnetic field regions



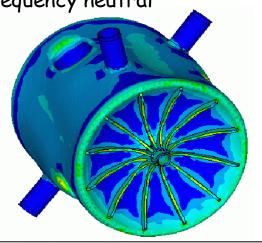
RF Design Specifics

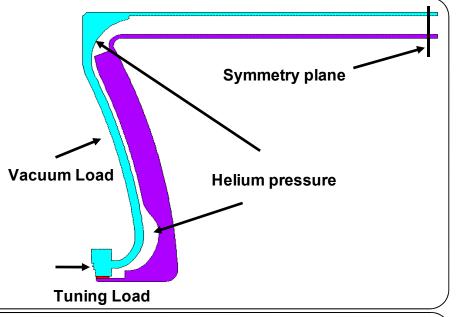

Jülich:

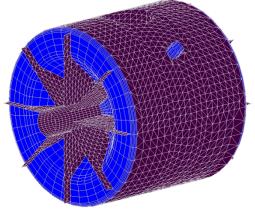
- Wide range of geometries,
- Rectangular cavity cross section
- End spokes different from mid spokes
- Relation between end-shape and tuning

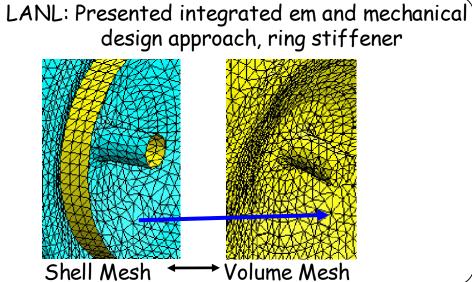
LANL: β =0.175 2-gap resonator

- Integration issues
 - Mechanical/em design
 - Ports for high power operation (100 mA beam),
 - Coupler influence,

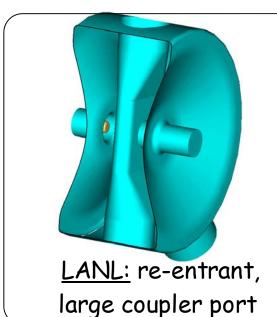

- Compactness
- Cleaning issues

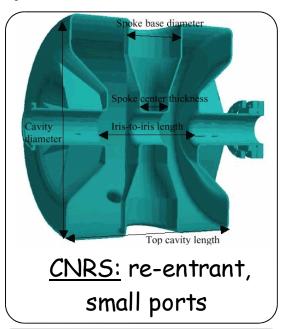


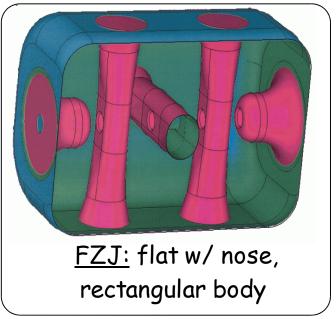

Mechanical Design


ANL: integrated cavity and helium vessel design: net effect of cooldown is frequency neutral

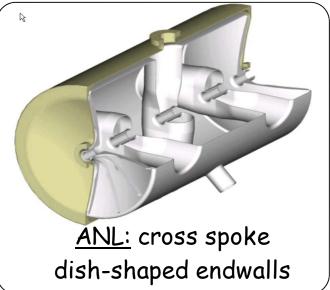
CNRS: Presented stiffener design for testing, needs improvement for operation


Spectrum of Spoke Geometries

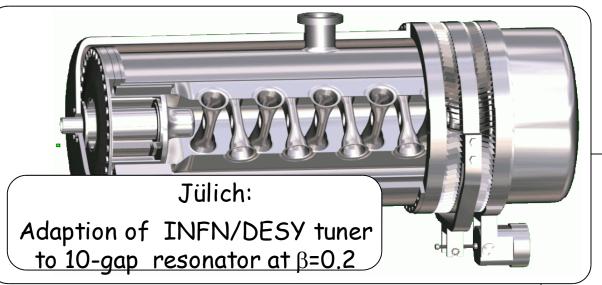

- Large number of degrees of freedom for RF and mechanical design
- Smaller experience base of what is working best
- Different emphasis on importance of criteria, based on application
- Tradeoff between optimization and keeping things simple
 - Wide range of ''Results''



"Spoke Gallery"

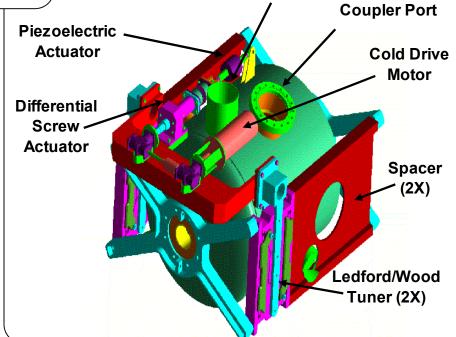


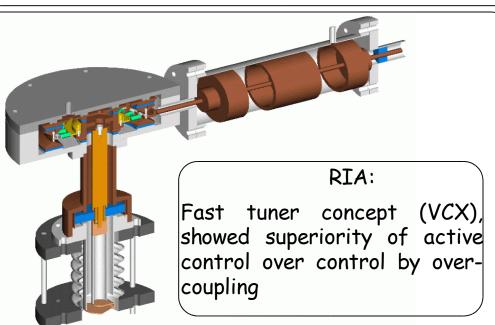
ANL: simple spoke dish-shaped endwalls



Design Parameter Summary

Institute	When	f ₀	β	Gaps	Radius	Length	Aperture	Ep/Ea	Bp/Ea	G	U @ 1MV/m	df/dz
		MHz			cm	cm	cm		mT/MV/m	Ω	mJ	Khz/mm
ANL	1998	340	0.300	2	22.0	17.7	1.3	4.20	9.100	71	51	368
	1998	340	0.400	2	22.0	22.2	1.3	4.00	10.700	75	85	-
	2002	345	0.393	3	24.0	38.1	3.0	3.47	6.900	71	151	-
	2003	345	0.500	4	21.7	67.0	4.0	2.88	8.650	92	397	-
	2003	345	0.620	4	22.9	85.0	4.0	2.97	8.860	103	580	-
CNRS	2002	359	0.350	2	20.4	15.0	3.0	3.06	8.280	101	-	500
	-	352	0.150	2	-	-	-	-	-	-	-	-
FZJ	2003	775	0.200	4	7.2		1.5	4.93	16.600	-	-	-
	-	700	0.200	10	7.2	-	-	-	-	-	-	-
LANL	2002	350	0.175	2	19.6	10.0	2.5	2.82	7.380	85	39	1010
	-	350	0.200	3	-	-	3.0	-	-	-	-	-
	-	350	0.340	3	-	-	3.0	-	-	-	-	-
LNL	2002	352	0.170	4	22.5	29.0	1.3	3.13	8.700	69	89	-
	2002	352	0.124	4	22.5	20.0	1.3	3.45	11.200	45	59	1080





Tuners

LANL:
Slow tuner plus PZT concept

Thermosyphon Port

Other Related Topics

- Fabrication:
 - Main fabrication steps: ANL, CNRS and LANL
 - Fabrication: in industry or w/ industry involvement
- Cryomodules:
 - ANL: ATLAS based concept, separated beam vacuum from cryo module vacuum
 - CNRS: relation of cryomodule design to reliability requirement for XADS
 - LANL: ADTF based, thermosyphon, power coupler as cavity support, assembly by axial insertion
- Microphonics:
 - Overview talk by Delayen
 - ANL: Measurement setup, relation to mechanical modes, influence of refrigerator noise.

Other Related Topics

• Powercoupler:

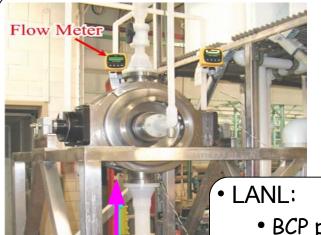
- ANL: RIA coaxial loop coupler for spokes, combination with VCX investigated (500 W-20 kW)
- LANL: Coaxial antenna coupler, incorporated benefical concepts from APT coupler (up to 212 kW)

Multipacting:

• Using the MULTP (Moscow University) code, requirements for full 3D simulations shown. No sufficiently benchmarked tools available, yet

• HOMs:

 No experience yet, HOM removal by couplers more important due to smaller beam pipes

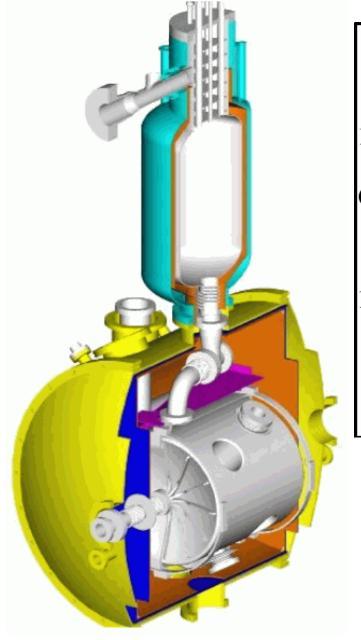

Cavity Processing

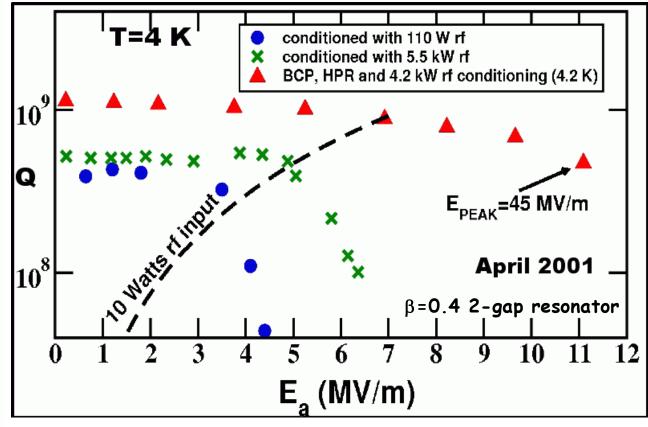
· ANL:

Flow Direction

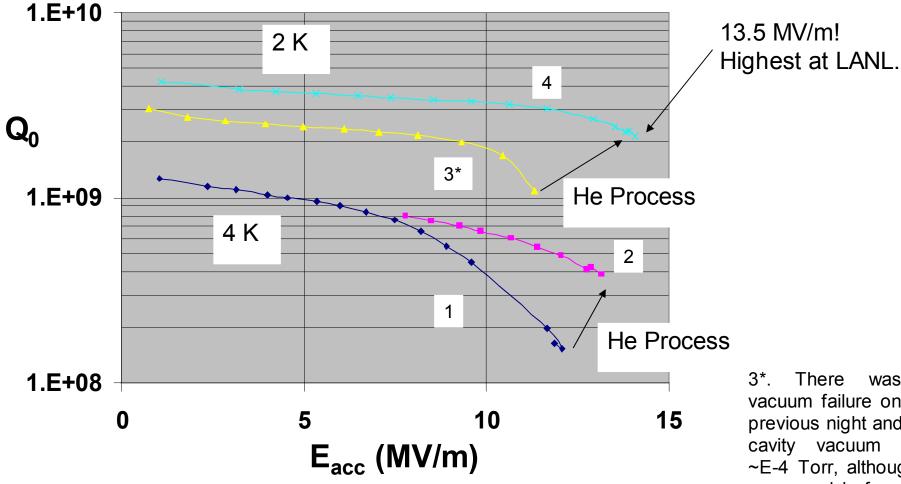
- Parts are electropolished before final welding
- Light BCP plus HPR after completion
- RF processing

• CNRS:


- BCP plus HPR treatment planned
- Do not have in-house capability yet, done at Saclay


- BCP plus HPR treatment
- Implemented multiport BCP system for better flow
- Baking at 110 ° C

Testing (ANL)

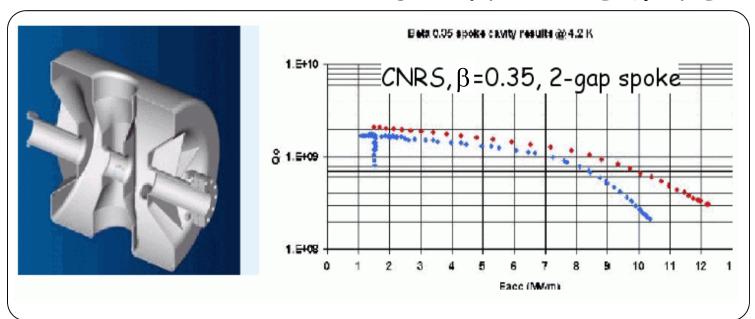


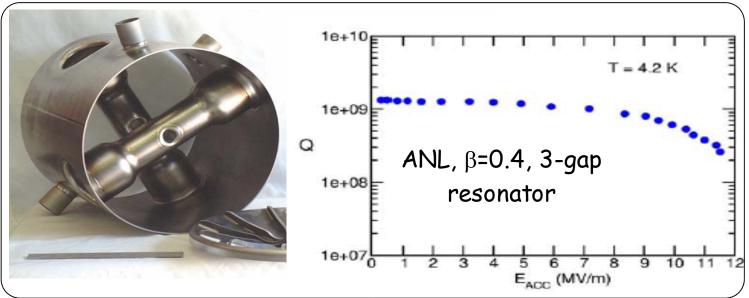
- Results for β =0.3 and β =0.4 2-gap resonators
- Testcryostat for β =0.4 3-gap resonator
- Long term (1 month) test at 7 MV/m

Testing (LANL)

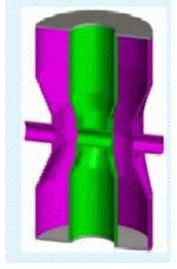
was vacuum failure on the previous night and the cavity vacuum was ~E-4 Torr, although it recovered before this test.

- Cavities need more MP processing than ANL cavities
- Flange on power coupler port needs to be moved further out
- Q disease occurs when held around 100 K for more than 60 hours


Performance Summary

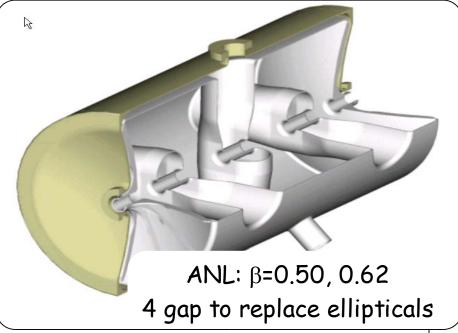

Institute	f ₀	β	Gaps	Q ₀ (4K)	Q ₀ (2K)	E _{amax}	E _{pmax}	B _{pmax}	Limit
	MHz			Low Field	Low Field	MV/m	MV/m	mT	
ANL	340	0.300	2	2.00E+09	8.50E+09	12.5	52.5	113.75	Quench
	350	0.400	2	1.00E+09	1.30E+09	11.5	46.0	123.05	Quench
	345	0.400	3	1.30E+09	-	11.5	39.9	79.35	Quench
CNRS	359	0.350	2	1.10E+09	-	12.2	37.3	101.02	Power
LANL	350	0.175	2	1.74E+09	7.00E+09	13.5	38.1	99.63	Quench

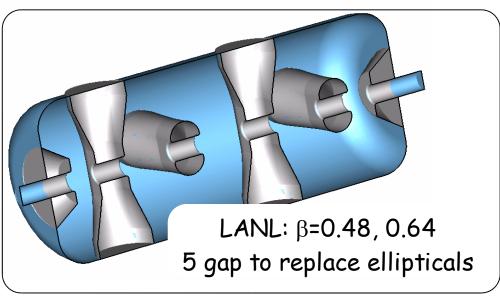
Recent Results

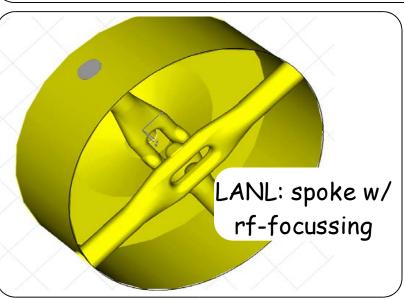


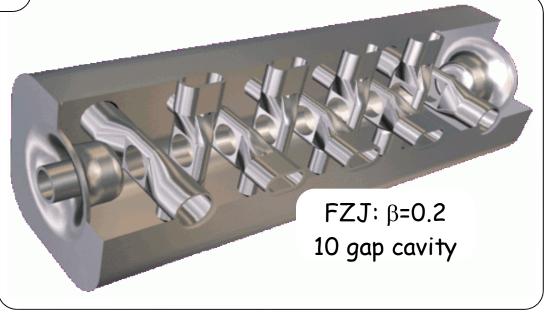
LANL:

- Q-disease study
- 24 hrs at 100K ok
- effect accumulative

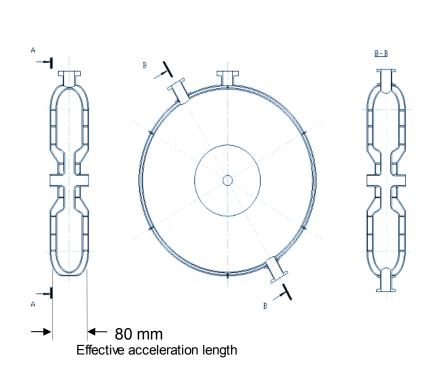

 $E_p/E_a=2.7$, $B_p/E_a=7.4$ mT/MV/m $E_{peak} > 35$ MV/m (2K)

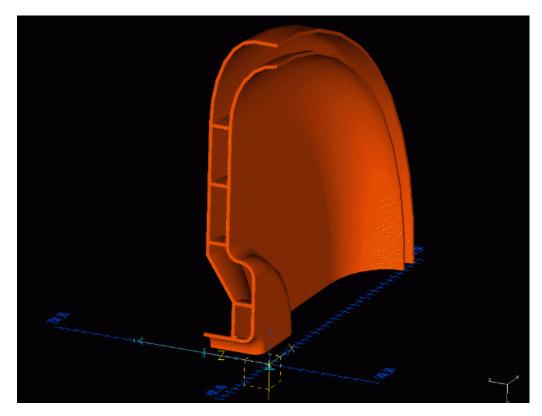



Frank Krawczyk, Spoke Resonator Workshop Report SRF 2003, Travemünde, Germany, September 2003



Next Generation Examples

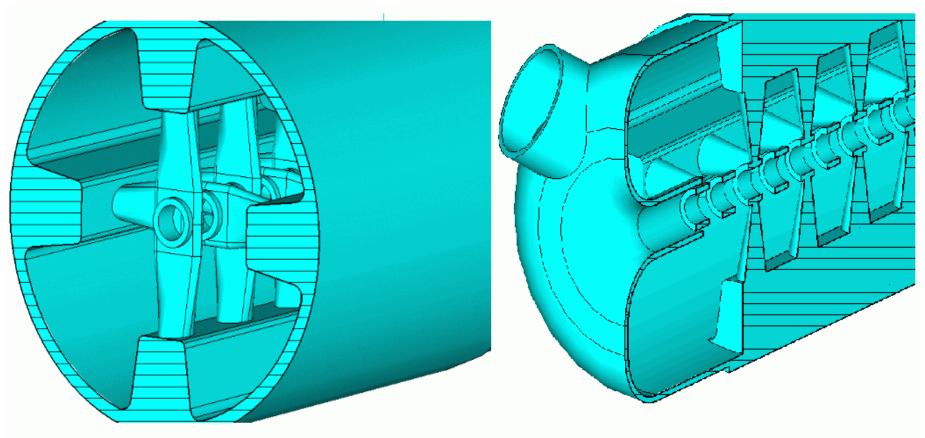




Alternate Designs

LNL: Re-entrant Resonator: β =0.1, 352 MHz,

tested: E_a=8.5 MV/m, no multipacting



Alternate Designs

University of Frankfurt: CH structure β =0.1, 175/350 MHz, H₂₁₀ mode

Summary

- All groups active in the field presented their work and shared their approaches on the details of the spoke resonator design process and related issues
- Open technical discussion provided a good understanding of details
- A lot of ''dos and dont's'' that normally are not published were shared
- Recent successes by all groups were clearly related to the introduction of high cleaning standards to these structures (BCP, EP and HPR)
- Importance of multi-gap spokes acknowledged (better $E_{\rm real}$), may be of limited benefit, if failure tolerance is an issue

Outlook

- Proof-of-principle has been done for a variety of different resonators
- What is still missing is
 - a high power demonstration
 - demonstration of a spoke resonator operation with beam
- Further issues that have not been sufficiently addressed:
 - High power coupling,
 - HOMs,
 - 3D-Multipacting simulations,
 - Applicable β -range

Acknowledgments

- Jean Delayen and Ken Shepard for the constant support in advancing the understanding of low- β structures
- All presenters and participants in the discussions that openly shared their knowledge to benefit the community
- Ken Shepard, Jean Delayen, Brian Rusnak, Dale Schrage and Tsuyoshi Tajima for helping in structuring the workshop to cover all that is important

